
1

Travel Model Two Development: Roadway Supply

Technical Paper

Metropolitan Transportation Commission with Parsons Brinckerhoff, Inc.

September 9, 2013

m:\development\travel model two\supply\deliverables\roadways\2013 09 09 release roadway network.docx

2

1 Overview
MTC is rebuilding the representation of supply in our travel model. When complete, the new

representations of space, roadways, transit service, sidewalks, and bicycle ways will become part of the

Travel Model Two modeling system. For an overview of the model design, please see the Travel Model

Two: Strategic Supply Design technical paper1.

This technical paper outlines the Travel Model Two roadway network. Specifically, it discusses the steps

for building the network from the TeleAtlas North America (TANA) data set. The processes are

implemented via a collection of Microsoft DOS batch files, Python scripts, and Cube Voyager scripts.

This paper describes these processes in detail.

As shown in Figure 1 below, The Travel Model Two roadway network captures an order of magnitude

more detail than the roadway network included in Travel Model One. This increased detail should

support more accurate representations of vehicle movements in the travel model.

Figure 1 – Example Travel Model One and Travel Model Two Highway Network Resolution

Travel Model One

Travel Model Two

1http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf

http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf
http://analytics.mtc.ca.gov/foswiki/pub/Main/Documents/2012_08_24_RELEASE_Strategic_Design.pdf

3

2 Inputs
An automated process has been developed to create a Cube network, which is compatible with the Travel

Model Two software, from the TeleAtlas (now owned by TomTom) North America database. Prior to

executing the steps, the following inputs are required:

1. ca_tana2011.gdb: The California TeleAtlas North America 2011 all roads highway network.

This geo-database contains all links and junctions, as well as their attributes. The feature classes

ca_jc and ca_nw must be included, which are the California network nodes and links,

respectively. Specific documentation on the network and attributes can be found in the MultiNet

Shapefile Format Specification document provided with the network. This document is available

from MTC upon request.

2. abag.gdb: Geo-database containing the feature class ABAG_blockgroups_Dissolve,

which defines the MTC model area and is used to extract the TeleAtlas nodes and links for the

MTC model area.

3. TAZ and MAZ Zone Centroid Shapefiles: County-specific travel analysis zone (TAZ) and

micro-analysis zone (MAZ) centroid locations. Each county’s shapefile must be projected in

NAD83 CA State Plane FIPS VI geometry and contain the following fields:

a. TAZ or MAZ (depending on whether the zones are MAZs or TAZs): the zone number for

each MAZ or TAZ. Zone numbering is sequential and follows the scheme described in

Zone Numbering System below.

b. COUNTY: the county number of the MAZ and TAZ centroids. This is used to renumber

each MAZ and TAZ according to the scheme described in Zone Numbering System.

c. POINT_X: the X coordinate (in State Plane feet) of the centroid

d. POINT_Y: the Y coordinate (in State Plane feet) of the centroid

4

3 Zone Numbering System
The highway network uses a numbering system whereby each county has a reserved block of nodes.

Within each county’s block, nodes 1 through 9,999 are reserved for TAZs, 10,001 through 89,999 are for

MAZs, and 90,001 through 99,999 for transit access points or TAPs. The blocks are assigned to the nine

counties per MTC’s numbering scheme, as shown in Table 1. TeleAtlas network nodes are numbered by

county as well and range from 1,000,000 to 10,000,000 as shown in Table 2. In Table 2, HOV lane nodes

are those nodes corresponding to general purpose lane nodes.

Table 1 - County Zone Numbering System

County Reserved TAZ Reserved MAZ Reserved TAP

1 San Francisco 1 - 9,999 10,001 – 89,999 90,001 – 99,999

2 San Mateo 100,001 – 109,999 110,001 – 189,999 190,001 – 199,999

3 Santa Clara 200,001 – 209,999 210,001 – 289,999 290,001 – 299,999

4 Alameda 300,001 – 309,999 310,001 – 389,999 390,001 – 399,999

5 Contra Costa 400,001 – 409,999 410,001 – 489,999 490,001 – 499,999

6 Solano 500,001 – 509,999 510,001 – 589,999 590,001 – 599,999

7 Napa 600,001 – 609,999 610,001 – 689,999 690,001 – 699,999

8 Sonoma 700,001 – 709,999 710,001 – 789,999 790,001 – 799,999

9 Marin 800,001 – 809,999 810,001 – 889,999 890,001 – 899,999

5

Table 2 - County Network Node Numbering System

County Network Node HOV Lane Node

1 San Francisco 1,000,000 - 1,500,000 5,500,000 - 6,000,000

2 San Mateo 1,500,000 - 2,000,000 6,000,000 - 6,500,000

3 Santa Clara 2,000,000 - 2,500,000 6,500,000 - 7,000,000

4 Alameda 2,500,000 - 3,000,000 7,000,000 - 7,500,000

5 Contra Costa 3,000,000 - 3,500,000 7,500,000 - 8,000,000

6 Solano 3,500,000 - 4,000,000 8,000,000 - 8,500,000

7 Napa 4,000,000 - 4,500,000 8,500,000 - 9,000,000

8 Sonoma 4,500,000 - 5,000,000 9,000,000 - 9,500,000

9 Marin 5,000,000 - 5,500,000 9,500,000 - 10,000,000

6

4 Build Scripts
The highway build process is performed by a series of Python (.py) and Cube Voyager scripts (.s). Each

of the following scripts is described below in more detail:

1. mtc_networks_data.py

2. buildNetwork.s

3. mergeCentroids.py

4. mergeMazTaz.s

5. getTAZVertices.py

6. buildConnectorsMAZ.py

7. buildConnectors.s

8. buildConnectorsTAZAll.py

9. buildConnectorsTAZ_Part1.s

10. taz_usage.s

11. finalConnectors.py

12. buildConnectorsTAZ_Part2.s

In addition, a series of post-processing scripts are run after all of the network build processes (highway,

transit, bike, pedestrian) have completed. These scripts are:

13. pre_postprocess.py

14. netToShapefileForPostprocess.s

15. postprocess.py

16. build_final_network.s

4.1 mtc_networks_data.py

Purpose: Creates highway network links and nodes shapefiles, re-numbers network nodes, and creates

additional link and node attributes.

This script begins the network build process by creating feature classes for relevant links and nodes from

the California statewide TeleAtlas 2011 network. It intersects the statewide “all roads” network links and

nodes with the dissolved ABAG block groups feature class, ABAG_blockgroups_Dissolve (from

abag.gdb) to obtain the MTC model area relevant links and nodes. It also re-numbers the TeleAtlas

network nodes by trimming the first seven digits of the node ID number and adding an offset of three

million. This offset helps identify TeleAtlas nodes from MAZs, TAZs, and TAPs. In addition, new fields

7

are created and calculated for the links and nodes. For links, the following new fields are created and

assigned.

Table 3 - New Link Attributes

Field Name Description Data Type

F_JNCTID_h Recode of the FROM node ID field, F_JNCTID Long Integer

T_JNCTID_h Recode of the TO node ID field, T_JNCTID Long Integer

oneway_recode

Recode of the ONEWAY field for building the network late:
‘FT’ = 1
‘TF’ = -1
Blank or ‘N’ = 2

Short Integer

ASSIGNABLE TRUE if FRC is not 7 or ONEWAY is not N Short Integer

FEET Conversion of the METERS field to feet Double

For nodes, the following new fields are created and assigned.

Table 4 - New Node Attributes

Field Name Description Data Type

ID TeleAtlas node ID Long Integer

ELEV Elevation (in feet) of the node, to be assigned later Long Integer

ID_hash Recode of the ID field Long Integer

FEATTYP TeleAtlas feature type (junction or railway junction) Short Integer

JNCTTYP TeleAtlas junction type Short Integer

Finally, the new feature classes are projected to NAD83 California State Plane FIPS VI and written to

Shapefile for building a Cube network (performed in the following script).

8

Inputs: ca_jc and ca_nw from ca_tana2011.gdb

ABAG_blockgroups_Dissolve from abag.gdb

Intersect.gdb

Outputs: ca_jc_relevant_sp.shp

ca_nw_Intersect_sp.shp

Required Python Modules: ArcPy

4.2 buildNetwork.s

Purpose: Builds a Cube network from the link and node Shapefiles created in mtc_networks_data.py.

This script executes the Cube SHAPE2NETWORK function and builds a highway network file from the link

and nodes shapefiles created in mtc_networks_data.py. It specifies that the link’s from and to nodes

be set to the renumbered from and to node fields (F_JNCTID_h and T_JNCTID_h, respectively) and

specifies to use the oneway_recode field for specifying direction for auto travel.

Inputs: ca_jc_relevant_sp.shp

ca_nw_Intersect_sp.shp

Outputs: tana_sp.net

4.3 mergeCentroids.py

Purpose: Merges each county-specific MAZ and TAZ centroids Shapefiles into a single Shapefile to

insert into the network. Adds a new field, N, and sets it to the renumbered zone number, according to the

zone numbering scheme in Table 1.

This script locates all of the MAZ and TAZ centroids Shapefiles in the paths specified and merges the

results to a new feature class. It begins by creating the new target feature class, using the first MAZ

feature class found as a template. It adds a new field, N, to store the calculated zone number, and then

merges all MAZs found into the new feature class. For MAZs the N field is then calculated to be:

MAZ + (COUNTY – 1) * COUNTY_OFFSET + MAZ_OFFSET

9

where MAZ and COUNTY are fields that must exist in each MAZ centroids shapefile. COUNTY_OFFSET and

MAZ_OFFSET are global variables, set to 100,000 and 10,000, respectively. Similarly, TAZs are merged,

and N is set to the following for TAZs:

TAZ + (COUNTY – 1) * COUNTY_OFFSET

Inputs: MAZ and TAZ centroid Shapefiles for each county. Each MAZ Shapefile requires numeric MAZ

and COUNTY fields, where COUNTY is set according to the county numbering scheme shown in

Table 1.

NOTE: All input files must be in the same projection, specifically: NAD83 California

State Plane FIPS VI.

Outputs: maz_taz_centroids.shp

Required Python Modules: ArcPy

4.4 mergeTazMaz.s

Purpose: Integrates the newly created centroids with the existing TeleAtlas highway network created in

buildNetwork.s. Writes the results to a new network file and also writes out the links and nodes to

separate DBFs for use in generating connectors in buildConnectorsMAZ.py.

Inputs: tana_sp.net

maz_taz_centroids.dbf (from maz_taz_centroids.shp)

Outputs: tana_sp_with_maz_taz_centroids.net
tana_sp_with_maz_taz_links.dbf

tana_sp_with_maz_taz_nodes.dbf

4.5 getTAZVertices.py

Purpose: Writes out the TAZ polygon vertices (i.e. shape points that make up the polygon) to a text file

for use in building TAZ connectors.

Inputs: TAZ polygon Shapefiles for each county

Outputs: TAZVertices.csv – COUNTY, TAZ, X, Y fields

Required Python Modules: ArcPy

10

4.6 buildConnectorsMAZ.py

Purpose: Builds text file of MAZ connectors used as input by Cube to generate new links.

MAZ connectors are created by loading the TANA links and nodes DBFs and determining which

highway network nodes are eligible for consideration as a connector end node. If the link is a freeway

(FREEWAY = 1), a dedicated ferry link (FT = 0), or it is not assignable (ASSIGNABLE = 0), then the

link’s A node is added to a set of highway nodes to exclude for consideration. Next, spatial indexes of

highway nodes to consider are created for MAZs. All of the nodes are read in, and if COUNTY is 0, the

node is added to the spatial indexes if it is not a node that was determined to be ineligible. Also, all of the

MAZ nodes are read into a hash table for easily looking up values later.

Then, the hash table of MAZs is read and processed. The MAZ spatial index is queried, and the nearest

two (configurable via the global variable NUM_NEAREST_NODES_MAZ) highway nodes are selected for

connectors. By utilizing the local street network, MAZs only need to connect to the network at a couple

locations. The MAZ connectors are written to a CSV file, along with the distance. The fields are A, B,

distance. To make Cube recognize the connector as bidirectional, the connector is written twice,

reversing A and B.

Inputs: tana_sp_with_maz_taz_links.dbf

tana_sp_with_maz_taz_nodes.dbf

Outputs: connectorsMAZ.csv, a CSV file with A, B, and distance columns containing two

connectors for MAZs.

Required Python Modules: rtree, dbfpy

4.7 buildConnectorsTAZAll.py

Purpose: Builds text file of TAZ connectors used as input by Cube to generate new links.

The initial set of TAZ connectors are created by loading the TANA links and nodes DBFs and

determining which highway network nodes are eligible for consideration as a connector end node. If the

link is assignable (ASSIGNABLE = 1) and is a collector or major arterial (FT = 4 or FT = 7) then

the link’s nodes will be considered for TAZ connectors. Next, the TAZ vertices are read from the CSV

file and are assigned a nearest network node via spatial index. A spatial index of the nearest node of each

11

TAZ vertex is created for each TAZ. Also, all of the TAZ nodes are read into a hash table. All of the

valid TAZ connectors are then written to a CSV file, along with the distance. The fields are A, B,

distance. To make Cube recognize the connector as bidirectional, the connector is written twice,

reversing A and B.

Inputs: tana_sp_with_maz_taz_links.dbf

tana_sp_with_maz_taz_nodes.dbf

 TAZVertices.csv

Outputs: connectorsTAZ.csv, a CSV file with A, B, and distance columns containing four

connectors for TAZs.

Required Python Modules: rtree, dbfpy

4.8 buildConnectorsTAZ_Part1.s

Purpose: Builds connectors for the TAZ nodes in the input network and creates a new network file with

the connectors.

Sets the connector type field, CNTYPE to TAZ and makes the connectors assignable (sets ASSIGNABLE =

1) and then reads in the network with TAZ centroids and text file with (origin, destination,

distance) for the connectors and merges them.

Inputs: tana_sp_with_maz_taz_centroids.net

Outputs: tana_sp_with_maz_taz_centroids_connectors.net

4.9 taz_usage.s

Purpose: Assigns a matrix of ones to the network in order to identify which TAZ connectors are most

useful.

The script first re-numbers the TAZ nodes from 1 to num zones since Cube requires sequential zone

numbers for assignment. Then it creates a matrix of 1s and assigns it based on link length (FEET). Next

it deletes connectors which have no assigned volume.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: tana_sp_with_maz_taz_centroids_connectors_assigned.net

12

4.10 finalConnectors.py

Purpose: Builds text file of the final best N TAZ connectors.

Loops through the connector links and builds a list of all connectors for each TAZ. Then sorts the list of

connectors by assigned volume, and writes out the top eight (as configured by the MAX_CONNECTORS

argument). The TAZ connectors are written to a CSV file, along with the distance. The fields are A, B,

distance. To make Cube recognize the connector as bidirectional, the connector is written twice,

reversing A and B.

Inputs: tana_sp_with_maz_taz_centroids_connectors_assigned_links.dbf

tana_sp_with_maz_taz_centroids_connectors_assigned_nodes.dbf

Outputs: connectorsTAZFinal.csv, a CSV file with A, B, and distance columns containing four

connectors for TAZs.

Required Python Modules: rtree, dbfpy

4.11 buildConnectorsTAZ_Part2.s

Purpose: Builds connectors for the TAZ nodes in the input network and creates a new network file with

the final set of TAZ connectors.

Like buildConnectorsTAZ_Part2.s, reads in the TAZ connector links and sets the connector type

field, CNTYPE to TAZ and makes the connectors assignable (sets ASSIGNABLE = 1). This script also

then drops the computer generated Alameda County connectors and reads in the Alameda County

connectors coded by MTC. The TAZ connectors are also written to a CSV file, along with the distance.

The fields are A, B, distance. To make Cube recognize the connector as bidirectional, the connector is

written twice, reversing A and B.

Inputs: tana_sp_with_maz_taz_centroids.net

 AlamedaConnctors.txt

Outputs: tana_sp_with_maz_taz_centroids_connectors.net

 finalConnectorsOldNumbers.txt

13

4.12 buildConnectors.s

Purpose: Builds connectors for the MAZ nodes in the input network and creates a new network file with

the connectors.

Sets the connector type field, CNTYPE, to either MAZ or TANA, and makes the connectors assignable (sets

ASSIGNABLE = 1) and then reads in the network with MAZ and TAZ centroids and text file with

(origin, destination, distance) for the connectors and merges them.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: tana_sp_with_maz_taz_centroids_connectors.net

4.13 runAllHighway.bat

Purpose: Executes all necessary scripts to build the network as a sequence of other batch files. The batch

files, in order, are as follows:

1. runCreateShapeFiles.bat: Executes mtc_networks_data.py

2. runBuildNetwork.bat: Executes buildnetwork_sp.s

3. runMergeTazMaz.bat: Executes mergeCentroids.py, followed by mergeTazMaz.s

4. runBuildConnectors.bat: Executes getTAZVertics.py followed by

buildConnectorsMAZ.py, and buildConnectorsTAZAll.py, followed by

buildConnectorsTAZ_Part1.s, followed by taz_usage.s, followed by

finalConnectors.py, followed by buildConnectorsTAZ_Part2.s, followed by
buildConnectors.s

4.14 pre_postprocess.py

Purpose: Clean out any remnant files from an existing post-process run.

4.15 netToShapefileForPostprocess.s

Purpose: Builds link and node shapefiles from the existing Cube network.

Inputs: tana_sp_with_maz_taz_tap_centroids_connectors_osm_bike_routes.net

Outputs: postprocess_temp_link.shp

 postprocess_temp_node.shp

14

4.16 postprocess.py

Purpose: Renumbers nodes so that they are consistent with the numbering system described in Zone

Numbering System. This script also adds non-bus transit links explicitly to the network, adjusts TAP

nodes to be 25 feet (instead of 1 foot) from their primary connector node, and updates the transit line file

so that it uses these updated nodes. Finally, the script writes the link and node input files for building the

final network in Cube.

Inputs: postprocess_temp_link.shp

 postprocess_temp_node.shp

Outputs: postprocess_link.csv

 postprocess_node.csv

 transitLines.lin

4.17 build_final_network.s

Purpose: Builds the final network in Cube, including transit network, and exports it to shapefiles.

Inputs: postprocess_link.csv

 postprocess_node.csv

 transitLines.lin

 transitFactors.fac

Outputs: mtc_final_network.net

 mtc_final_network_links.shp

 mtc_final_network_nodes.shp

15

5 User Class, Toll, and Other Link Attributes
After building the TANA network in Cube, the existing Travel Model One user class (USER) link

attributes and number of lanes were joined (conflated) to the TANA network. This process involved the

following steps:

1. Select the existing Travel Model One links with special user class coding. These are links with

the following attribution:

a. USE = 2; HOV 2+

b. USE = 3; HOV 3+

c. USE = 4; No combination trucks

2. Manually identify the start and end TANA node of each special user class corridor (i.e. the

Eastbound I-580 carpool lane). Also note the user class code, the start and end node X and Y,

and the number of lanes to remove from the general purpose link and/or to add to the user class

link. These are stored in the use_links.xlsx file.

3. Run the Cube shortest path routine to get the TANA node sequence from the start node to the end

node for each corridor. This is done with the shortestPath_UseLinks.s script. This is the

set of new links to add to the network. The script outputs use_links_nodes.csv.

4. Copy the new links to the use_links_nodes.xls file and join link attributes to create the new

link records to add to the TANA network in Cube. The following files are then export from this

Excel file:

a. use_links_cube.csv – new user class links

i. NEWA – new A node which is the general purpose node number + 2 million

(which is later changed in the post-processing step to be consistent with the

county node numbering system)

ii. NEWB – new B node which is the general purpose node number + 2 million

(which is later changed in the post-processing step to be consistent with the

county node numbering system)

iii. OFFAX – new offset A X coordinate

iv. OFFAY – new offset A Y coordinate

v. OFFBX – new offset B X coordinate

vi. OFFBY – new offset B Y coordinate

16

vii. USECLASS – user class code

viii. FRC – TANA Functional Road Class

ix. NEWLANES - lanes

x. FEET – link length

xi. SPEEDCAT – TANA speed category

xii. KPH – TANA KPH

b. use_links_connectors_cube.csv – new connector links offset by 50 ft from the

general purpose links

i. CONNECTORA – A node

ii. CONNECTORB – B node

iii. CONNECTORA_REV – A node for reverse link

iv. CONNECTORB_REV – B node for reverse link

v. USECLASS – user class code

vi. FRC – TANA FRC

vii. NEWLANES - lanes

viii. FEET – link length

ix. SPEEDCAT – TANA speed category

x. KPH – TANA KPH

xi. CNTYPE – ‘USE’

c. use_links_cube_gp.csv – revisions to the TANA general purpose link lanes

i. A – A node

ii. B – B node

iii. LANES – revised lanes

5. The TANA network includes the number of lanes for significant facilities such as freeways,

highways, and many major arterials. However, it does not include the number of lanes for all

links with LANES greater than one. To remedy this, the num_lanes.csv file was created to

update the TANA network where lane data was missing. This file includes the number of lanes

for the identified TANA network links and it was created by spatially joining and then manually

reviewing and adjusting the results. The file has the following fields: A, B, LANES.

17

6. Run mergeUseLinks.s to add the new links and to code various model specific attributes. The

script does the following:

a. Imports the new user class links with USECLASS set to 2, 3, or 4.

b. Adds the user class link connectors. See Figure 2 below for an example of the new user

class links and link connectors.

c. Revises the number of lanes on the general purpose links as needed.

d. Codes the link TOLLBOOTH attribute using the Travel Model One TOLL attribute values2.

e. Codes link facility type (FT) based on the TANA FRC and RAMP to Travel Model One

Facility Type crosswalk defined in Table 4 below. This will allow the link capacity to be

calculated based on the Travel Model One link capacity lookup table3. See Table 5

below for a count of the network links by facility type.

f. Codes the link free flow speed (FFS) in MPH based on the TANA KPH.

g. Sets the LANES attribute for TANA network links in the num_lanes.csv file.

h. Sets the NUMLANES attribute to LANES or to 1 if LANES is undefined. This allows for

reviewing the different components of the LANES coding later if needed.

Table 5 – Facility Type Crosswalk

FRC FRC Description RAMP FT FT Description

N/A N/A N/A 0
Connector (MAZ, TAZ, TAP,
USE)

0,1,2 Freeway, Major Road, Other Major Road T 1 Freeway to Freeway

0,1,2 Freeway, Major Road, Other Major Road F 2 Freeway

3 Secondary Road F 3 Expressway

6,7,8 Local Road, Insignificant Local Road, Other Road F 4 Collector

>2 Ramp T 5 Ramp

4,5 Local Connecting Road, Significant Local Road F 7 Major Arterial

2 http://mtcgis.mtc.ca.gov/foswiki/Main/HighwayNetworkCoding
3 The link capacity lookup table is based on facility type, area type, and signal coordination/ramp metering. Link area type,
which is based on TAZ (or potentially MAZ) population and employment density, will be dynamically coded during the model
run. In order to calculate a more even area type surface, the calculated TAZ (or potentially MAZ) area type will consider
neighbor zones. Once area type is coded, each link will be attributed with its capacity. Adjustments to the link capacity due to
signal coordination/ramp metering will be addressed when revising the model software.

http://mtcgis.mtc.ca.gov/foswiki/Main/HighwayNetworkCoding

18

Figure 2 – Example User Class Link Coding*

*User Class Links=Orange, User Class Connectors=Red, MAZ/TAZ Connectors=Grey, General Purpose/Other Links=Blue

Table 6 – Facility Type Link Count

Facility Type (FT) Description Count

0 Connector (MAZ, TAZ, TAP, USE) 353,092

1 Freeway to Freeway 596

2 Freeway 15,312

3 Expressway 21,384

4 Collector 593,450

5 Ramp 2,582

7 Major Arterial 161,339

19

5.1 shortestPath_UseLinks.s

Purpose: Generate a shortest path cost file between special user class corridor start and end nodes.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: use_links_nodes.csv, a CSV file with origin node, destination node,

intermediate node, and cumulative cost

5.2 mergeUseLinks.s

Purpose: Merge in user class links, user class link connectors, code link facility type, free flow speed, toll

booths, and lanes.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: tana_sp_with_maz_taz_centroids_connectors_uselinks.net

20

6 Network Connectivity
Two network connectivity tests were performed to check the network. The first was to run the MAZ to

MAZ shortest path script (shortestPath.s) to ensure it produced reasonable distances between MAZ

pairs. The second test was to run the TAZ skimming script (MTC_NetworkSkim_TAZ.s) to create a

TAZ distance skim matrix and a straight line distance matrix. This second script must renumber the TAZ

nodes since Cube requires sequential zone numbers for skimming.

The MAZ to MAZ shortest path script produced distances for all MAZ pairs. To ensure the TAZ

ASSIGNABLE network does not have any holes, the TAZ distance skim was created. The distance skim

had no TAZ pairs (beyond intra-zonals) with an unconnected value, which confirms all TAZ pairs are

connected. In addition, the network distances were compared with the straight line distances and no

extreme outliers were identified. Many of the zone pairs had reasonable deviations between the network

and straight line distances given the topology in the area. This is illustrated for TAZ 800013 to 800099 in

Figure 3 below.

Figure 3 - Network Distance Review

21

6.1 shortestPath.s

Purpose: Generate a shortest path cost file between MAZ pairs within a specified cost threshold. The

MAXPATHCOST is set to maximum network distance to consider destinations MAZs. The ORIGIN and

DESTINATION parameters are currently set to consider only MAZ nodes. The script outputs only the cost

to the final node in the path, so the NODE field is always the same as the J field.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: mazShortestPaths.csv, a CSV file with fields I, J, NODE, COST (FEET)

6.2 MTC_NetworkSkim_TAZ.s

Purpose: Create a TAZ level distance skim matrix and straight line distance matrix for checking the

network.

Inputs: tana_sp_with_maz_taz_centroids_connectors.net

Outputs: taz_dist.csv, a text file with fields I, J, and DISTANCE

 taz_skim_dist.csv, a text file with fields I, J, and DISTANCE

	1 Overview
	2 Inputs
	3 Zone Numbering System
	4 Build Scripts
	4.1 mtc_networks_data.py
	4.2 buildNetwork.s
	4.3 mergeCentroids.py
	4.4 mergeTazMaz.s
	4.5 getTAZVertices.py
	4.6 buildConnectorsMAZ.py
	4.7 buildConnectorsTAZAll.py
	4.8 buildConnectorsTAZ_Part1.s
	4.9 taz_usage.s
	4.10 finalConnectors.py
	4.11 buildConnectorsTAZ_Part2.s
	4.12 buildConnectors.s
	4.13 runAllHighway.bat
	4.14 pre_postprocess.py
	4.15 netToShapefileForPostprocess.s
	4.16 postprocess.py
	4.17 build_final_network.s

	5 User Class, Toll, and Other Link Attributes
	5.1 shortestPath_UseLinks.s
	5.2 mergeUseLinks.s

	6 Network Connectivity
	6.1 shortestPath.s
	6.2 MTC_NetworkSkim_TAZ.s

